J. K. SHAH CLASSES SYJC - MATHS TEST

BRANCH : CHARNIROAD SUB : MATHS MARKS : 40 Time : 1 Hour 30 min. Date : 09 / 10 /2016

SOLUTION Ans.1. (A) Attempt any SIX of one following

(1) Obtain the Crude Death Rate (CDR) for no. of persons from the date given below :

AGE	No. of Person	No. of
GROUP	(In'000)	Deaths
Below 10	12	150
10-30	20	110
30-45	35	380
45-70	24	210
Above 70	14	540
	105	1390
$\Sigma_{\rm pi}$ = 10	5 x 1000	
$\Sigma D_i = 13$	90	
C.D.R = $\frac{1}{1,0}$	³⁹⁰ ,000 x 1,000	

- C.D.R = 13.11 per thousand.
- **Ans.(2)** n=100, $\bar{x} = 62$, $\bar{y} = 53$, $\sigma x = 10$, $\sigma y = 12$, $\Sigma (x \bar{x}) (y \bar{y}) = 8000$ Karl pearsons coefficient correlation in given by

$$r = \frac{\frac{1}{n} \left[\Sigma(xy) - \overline{x} \cdot \overline{y} \right]}{\sqrt{\frac{1}{n} \sum x^2 - x^2}} \sqrt{\frac{1}{n} \sum y^2 - y^2}}$$
$$= \frac{\frac{\Sigma(x - \overline{x})(y - \overline{y})}{n}}{\sigma x \cdot \sigma y}$$
$$= \frac{\Sigma(x - \overline{x})(y - \overline{y})}{n \sigma x \cdot \sigma y}$$
$$= \frac{8,000}{100 \times 10 \times 12} = \frac{8}{12}$$
$$= 0.67$$

Ans.(3) Capital = Same Time period. Ameena = 12 months Yasmin = 9 months Shobana = 5 months Profit is Directly portional to ratio of capital Time period ratio = 12 : 9 : 5 Profit = 23,400 Ameena's Share = 23,400 x $\frac{12}{26}$ = ₹ 10,800 Yasmin's Share = 23,400 x $\frac{9}{26}$ = ₹ 8,100

(12 Marks)

Shobana Share = 23,400 x $\frac{5}{26}$ = ₹ 4,500 **Ans.(4)** $x + 2y \ge 4$; $2x - y \le 6$ Corresponding Equalities :x + 2y = 42x - y = 6Point on intersection :- A(4, 0) C-(3, 0) B(0, - 2) D(0, - 6) Origin Test : $x + 2y \ge 4$ $0 + 0 \ge 4$ $0 \geq 4$ False(i) $2x - y \leq 6$ $0-0 \leq 6$ $0 \leq 6$ True(ii)

The shaded portion represents the graphical solution for the given system of linear Ineguations.

Ans.(5)
$$R = \frac{2}{3}$$

 $\Sigma d^2 = 55$
 $N - ?$
By Spearman's formula,
 $R = 1 - \left[\frac{6\Sigma d^2}{n^3 - n}\right]$
 $\frac{2}{3} = 1 - \left[\frac{6(55)}{n^3 - n}\right]$
 $\frac{6(55)}{n^3 - n} = 1 - \frac{2}{3}$
 $\frac{330}{n^3 - n} = \frac{1}{3}$

990 =
$$n^3 - n$$

 $n^3 - n = 1,000 - 10$
 $\boxed{n = 10}$
Ans.(6) Given : $l_4 = 60$ and $L_4 = 45$, $P_4 = ?$
We know that
 $l_4 = \frac{l_4 + l_5}{2}$
 $45 = \frac{60 + l_5}{2}$
 $\therefore l_5 = 30$
Now, we have
 $\boxed{d_4 = l_4 - l_5}$
 $\therefore d_4 = 60 - 30$
 $\therefore d_4 = 30$
Finally,
 $\boxed{P_x = 1 - q_x}$
 $P_4 = 1 - q_4$
 $= 1 - \left[\frac{d4}{l_4}\right]$
 $= 1 - \left[\frac{d4}{l_6}\right]$

 $P_4 = 1 - 0.5$

 $P_4 = 0.5$

Ans.(7)

	1 st Cycle	2 ^{na} Cycle
Ratio of Cycle	16	23
Let the common multiple be 'X'	16x	23x
Price increased by	$ \begin{array}{r} 16x (10\%) \\ 16x \left(\frac{10}{100}\right) \\ \frac{16x}{10} \end{array} $	₹ 477
New price	$\frac{16x + \frac{16x}{10}}{\frac{716x}{10}}$	[23x + 477]
New price ratio	11 :	20

As we have,

$$\frac{\frac{176x}{10}}{23x + 477} = \frac{11}{20}$$

$$\therefore 20\left(\frac{176x}{10}\right) = 11(23x + 477)$$

$$\therefore 2(176) x = 11(23x + 477)$$

$$\therefore 2\left(\frac{176x}{11}\right) = 23x + 477$$

$$\therefore 2(16x) = 23x + 477$$

$$\therefore 32x - 23x = 477$$

$$\therefore 9x = 477$$

$$\therefore x = 53$$

Hence original price of 1st Cycle = 16x= 16(53)= 848 Original price of Cycle 2 = 23x= 23(53) = 1219 $3x + 2y = 26 \dots (1)$ Ans.(8) $6x + y = 31 \dots (2)$ Solving eq (1) & (2) simultaneously. Multiplying Σq (1) by2 6x + 4y = 526x + y = 31-3y = 21y = 7 $\therefore x = 4$ Let the regression equation x on y be 6x + y - 31 = 06x + y = 31bxy = $\frac{-b}{a}$ = $\frac{-1}{6}$ Let y on x be 3x + 2y = 26byx = $= \frac{-a}{b} = \frac{-3}{2}$ $r^2 = bxy x byx$ $r^2 = \frac{-1}{6} = \frac{-3}{2} = \frac{3}{12}$ = Since $r^2 \leq 1$ our assumption is correct r < 1 $r = \sqrt{bxy.byx}$ $=\sqrt{\frac{-1}{0}},\frac{-3}{2}$ r = -1

> Since, byx Σ bxy are negative Correlation Coefficient of regression $\frac{-1}{2}$

Ans2 (A) Attempt any Two of the following : (6 Marks) Optional Sequence of books can be obtained as Follows: (1) IV Ш V 11 Now, Min^m elapsed time can be Computed as follows : MACHINE Printing : M₁ Binding : M₂ Ideal Time Time Time Time time BOOK OUT OUT for M₂ IN IN SEQUENC 9 0 3 3 3 111 7 9 16 0 3 16 V 7 14 20 0 IV 14 19 20 23 3 Ш 19 26 26 28 0 Total Ideal time for M₂ 6 From above tabular format : (A) Total elapsed time (T) = 28 HRS (B) Ideal time for M_1 : (Total time taken by Machine M1 to) = T process all the jobs. = 28 - 26 \therefore Ideal time for 'H₁' = 2 HRS Ideal time for ' H_2 ' = 6 HRS (C) Ans.(2) Capital – Different OM = 30,000JAL = 40,000 JAGDISH = 50,000Time period - Different OM = 12 months JAI = 6 months JAGDISH = 3 months Profit x (directly proportional) to the product of Capital & Time Period. Profit ratio = (30,000 x 12) : (40,000 x 6) : (50,000 x 3) : 2,40,000 : 1,50,000 3,60,000 12:8:5 Profit ratio = Om Share = 17,500 = $\frac{12}{25}$ = 700 x 12 , = ₹ 8,400 Jai Share = 17,500 = $\frac{8}{25}$ = 700 x 8, = ₹ 5,600 Jagdish Share = 17,500 = $\frac{5}{25}$ = 700 x 8, = ₹ 3,500 Ans.(3) Given x (height of Male) y (Weight of Male) The class interval of x 150 - 154; 155 - 159; 160 - 164; 165 - 169 Class interval of y 60 - 64; 65 - 69; 70 - 74We shall take the class Interval of X along 1^{st} row Σ for y along 1 column for the Following bivariate frequency distribution Table.

Bivariate frequency distribution table of height and weight

			-	-	
Wgh	150 - 154	155 - 159	160 - 164	165 - 169	Total
hgh					
60 - 64	11 (2)		11 (2)		4
65 – 69	1 (1)	111 (3)	1 (1)		5
70 – 77	11 (2)	11 (2)	1111 (4)	111 (3)	11
	. ,		. ,	. ,	
Total	5	5	7	3	20

Marginal Distribution:

For 'x'

Height of Male	150 – 154	155 – 159	160 – 164	165 – 169	Total
No. of Male	5	5	7	3	20

For 'Y'

Weight (y)	60 - 64	65 – 69	70 – 74	Total
No. of Male	4	5	11	20

Conditional frequency Distribution

For x when y in the class interval 60 - 64

Height (x)	150 – 154	155 – 159	160 – 164	165 – 169	Total
No. of Male	2	0	2	0	4

(B) Attempt any Two of the following :

Ans.(1)	X + y ≤ 5	X + y ≤ 8	$4x + 3y \ge 12$
	A (5,0)	C (8, 0)	E (3, 0)
	B(0,5)	D(0,4)	F(0,4)

 $\frac{\text{Origin Test}}{0 + 0 \le 5} - X + y \le 5$ $0 + 0 \le 5$ True

 $X + 2y \le 8$ 0 + 0 \le 8 True

$$4x + 3y \ge 12$$

0 + 0 ≥ 12
FALSE

<u>Shading :-</u>

x + y = 5	- Towards the origin
x + 2y = 8	 Towards the origin
4x + 3y = 12	- Away from the origin

Graph :-

(8 Marks)

The region bounded by EAMD is feasible region To get cordinates of M

x + y = 5 (1) , x + 2y = 8Subtracting eg (1) from (2) x + 2y = 8x + y = 5- - y = 3Substitution y = 3 in eq (1) x = 2 $\therefore M (2,3)$ Points z = 2x-y (Minimize)

 $\therefore\,$ z is minimum at D (0,4) and the value is -4.

Ans.(2) No. of pair of observations (n) 10 = Sum of $x - Series(\Sigma x)$ 9 = Sum of y – Series (Σ y) 5 = Sum of square of x – Series(Σx^2) = 653 Sum of Square of y - Series (Σy^2) = 595 Sum of product of x and y series (Σxy) = 534 X and y Series $n\Sigma xy - \Sigma x.\Sigma y$ $r = \frac{1}{\sqrt{n\Sigma x^2 - (\Sigma x)^2} \sqrt{n\Sigma y^2 - (\Sigma y)^2}}$ $\frac{10(534)-(9)(5)}{\sqrt{10(653)-(9)^2-(\Sigma x)^2} \sqrt{10(595)-(5)^2}}$ = 10(534) - 45= $\sqrt{6530-81} \sqrt{5950-25}$ 5340-45 $\sqrt{6449}$. $\sqrt{5925}$ 5295 80.3 x 76.9 5295 = 6175

r = 0.85Hence, Product moment correlation coefficient. is = 0.85 С Α В 90% 80% 70% Exp 10% 20% 30% Saving Saving Ratio 7 3 4 Part (1) $\frac{Saving(A)}{Saving(B)} = \frac{3}{4}$ $\frac{90 (Exp of A's Salary)}{20 (Exp of R's Salary)} = \frac{3}{4}$ 80 (Exp of B's Salary) $\frac{(Exp of A's Salary)}{(Exp of B's Salary)} = \frac{3}{4}$ (Exp of B's Salary) Part (2) $\frac{Saving(B)}{Savina(C)} = \frac{4}{7}$ $\frac{20}{20} \frac{(Exp of B's Salary)}{(Exp of solary)} = \frac{4}{7}$ 30 (Exp of C's Salary) $\frac{Exp of B Salary}{Exp of C Salary} = \frac{4}{7} x \frac{3}{2} = \frac{6}{7}$ Now, savings of A, B & C are in ratio. A : B : C 3 2 6 : 7 9:6:7

Total Salary is 66,000

: A's Salary =
$$66,000 \times \frac{9}{22} = 27,000$$

B's Salary = $66,000 \times \frac{6}{22} = 18,000$
C's Salary = $66,000 \times \frac{7}{22} = 21,000$

(1)

(6 Marks)

$$byx = \frac{n\Sigma xy - \Sigma x \Sigma y}{n\Sigma x^2 - (\Sigma x)^2}$$
$$= \frac{6(116) - (21)(30)}{6(91) - (21)^2}$$
$$byx = \frac{60}{105} = 0.6285$$
$$(y - \bar{y}) = byx (x - \bar{x})$$
$$y - 30 = 0.6285 (x - 21)$$

y = 0.6285x + 2.80025Required egⁿ of regression line y on x.

for x = 10

y = 0.6285(10) + 280025

= 6.285 + 2.80025

Ans.(2)

Х	Lx	Axlx-ux-1	X=dx/Lx	Px=(1-Lx)	$Lx + \frac{Lx + Lx + 1}{2}$	$Tx = \Sigma L.x$	ex°=Tx/Lx
0	1000	40	0.04	0.96	980	2880	2.88
1	960	160	0.17	0.83	880	1900	1.979
2	800	200	0.25	0.75	700	1020	1.275
3	600	580	0.97	0.03	310	320	0.533
4	20	20	1	0	10	10	0.50
5	0	-	-	-	-	-	-

Ans.(3)

	Mr. Ahuja	Mr. Sinha
Capital	75,000	5,000
Time	12 month	5 months
Capital	5,000	40,000
Time	7 months	7 months

<u>Rule (3)</u>

Profit is directly proportional to the product of capital [75,000(12)+5,000(7)] : [5,000(5)+40,000(7)] 5,000[15(12)+(7)] : 5,000 [10(5) + 8,000(7)] 187 : 106

A's share of Profit = 11720 x $\frac{187}{293}$ = 40 x 187 = ₹ 7480 B's Share of Profit = 11720 x $\frac{106}{293}$ = 40 x 106

(B) Attempt any Two of the following :

Ans.(1)

	Old Alloy Zn = 37%	Zinc Added Let x ka is	New Alloy ZA=70%
	Sn = 63%	added	Sn=30%
Weight	400	Х	400 + x
Weight of Z	400 x $\frac{37}{100}$	x	$(400 + x)\left(\frac{7}{10}\right)$
	= 148		

Since x is the weight of the zinc added to old alloy so that new alloy consist of 70% of Zinc

Weight of zinc in + weight of = weight of zinc oOld alloy zinc added in new alloy $148 + x = 400 + x \left(\frac{7}{10}\right)$ $\frac{148 + x}{7} = \frac{400 + x}{10}$

1480 + 10x = 2,800 + 7x

(8 Marks)

$$3x = 1320$$

 $x = \frac{1320}{3}$
 $x = 440$ kg

 \therefore 440 kg of Zinc to be added.

Ans.(2) Compute rank correlation coefficient for the marks in History and marks in Geography obtained by 8 Students.

HISTORY	Geog	R ₁	R ₂	CR ₁	CR ₂	$D=1(CR_1 - CR_2)$	d ₂
70	80	1	1	1.5	1.5	0	0
70	60	1	5	1.5	5	3.5	12.25
65	80	3	1	3	1.5	1.5	2.25
60	70	4	3	4	3	1	1
55	65	5	4	5	4	1	1
50	50	6	6	6	6	0	0
40	42	7	7	7	7	0	0
30	28	8	8	8	8	0	0
	n = 8						$\Sigma d^2 = 16.50$

T.C.F

	Rank	М	TCF = $\frac{1}{2}(m^2 = m)$
T ₁	1	2	0.5
T ₂	1	2	0.5

By spearmans Rank Correlation of coefficient

$$R = 1 - \left[\frac{6(2d^2 + T_1 + T_2)}{n^3 - n}\right]$$
$$= 1 - \left[\frac{6(16.50 + 0.5 + 0.5)}{512 - 8}\right]$$
$$= 1 - \left[\frac{6(17.5)}{504}\right]$$
$$= \frac{504 - 505.0}{504}$$
$$= \frac{133}{\frac{399}{504}} = 0.7917$$
$$168$$
$$\therefore R = 0.7917$$

Ar

1s.3	5x + y	≥ 10		
	2x + 2	y ≥ 12		
	x + 4	y ≥ 12		
	The objective fun z =	3x + 2y is to	be minimized	
	Now, 5x +	y = 10		
	Given in equality	5x + y ≥ 10	$2x + 2y \ge 12$	$x + 4y \ge 12$
	Corresponding equality	5x + y = 10	2x + 2y = 12	x + 4y = 12
	P.O.I	(A) (2,0)	(C) (6,0)	(E) (12,0)
		(B) (0,10)	(D) (0,6)	(F) (0,3)
	Origin Test :	5x + y ≥ 10	$2x + 2y \ge 12$	$x + 4y \ge 12$
		0 ≥ = 10	0 ≥ = 12	0 ≥ = 12

From graph ABCD is unbounded feasible region. This is a convex polygon whose lower verticals are A(,10) B(1,5) C(4,2), D(12,0). At least one of the vertices the value of objective function. Z = 3x + 2y will be minimum.

At A(0,10)	z = 3(0) + 2(10) = 20
B (1,5)	z = 3(1) + 2(5) = 13
C (4,2)	z = 3(4) + 2(2) = 16
D(12,0)	z = 3(12) + 2(0) = 36

At B(1,5) the value of Z is minimum Hence, optimum solution is

X = 1, Y = 5, Z min = 13

 i.e No. off liquid Jar = 1
 No. of dry product cartoons = 5 (Minimum cost ₹ 13.)